11 Oct 2022

Exploring the pioneering use cases of AI and machine learning within fintech and financial services

I spend a lot of my time in the city of London, meeting colleagues from the world of financial services to support them with their computing and data centre challenges. More and more of our conversations are encompassing the need to house heavy-duty, high density artificial intelligence (AI) hardware - an area which is completely reinventing how the industry works.

Today, banks, insurers, and hedge funds are all using AI to drive profitability and outperform their competitors. In fact, the thirst for AI has pushed these organisations to experiment with GPUs and high performance computing (HPC), elevating the importance of data centres that can support increased power and cooling requirements. But to borrow a financial term, why has this industry become so bullish on AI?

While machine learning is indeed used to make investment decisions, many other use cases for AI are simpler and more widespread. Many high street banks, for example, have begun by using the technology for chatbots and virtual customer service agents, harnessing the benefits to deliver superior service to consumers.

The first implementations of this technology, however, earned a deservedly bad reputation, with their performance often inferior to a simple FAQ page. Over the years, this software category has improved at an impressive rate, supercharged by advances in the development of very large language models, and now, it is safe to say that chatbots are finally becoming useful.

For instance, the world’s largest language model is understood to be WuDao 2.0, built by the Beijing Academy of Artificial Intelligence to simulate conversational speech, write poems, and is based on 1.75 trillion parameters. By comparison, GPT-3, the famous Open AI model that supposedly penned a Guardian article in 2020, was built with just 175 billion parameters, demonstrating just how fast things have been moving in the field.

Another reason for the rapid improvements in chatbot performance is the realisation that these conversations have to be designed, which is a complicated process and requires marrying the knowledge acquisition capabilities of AI systems with the understanding of what customers are looking for, and why.

Nuance, one of the leaders in intelligent chatbot design, was recently acquired by Microsoft in a deal worth almost $20 billion, underscoring the importance of this approach. And with so many organisations busy developing their chatbots into full-feature virtual assistants - like Erika, developed by Bank of America, or Eno from CapitalOne - that can advise customers on their budget and recommend specific products, it’s clear to see that the benefits of AI have fast become essential to financial businesses.

Behavior and sentiment in AI bots

In other instances, AI-based functionality can be layered on top of chatbots, like sentiment analysis, which enables the system to tell if the customer is particularly happy, or angry, and take the appropriate action.

Of particular interest to financial organisations is the ability to combine chatbots with biometrics to authenticate users as they speak, or even through ‘behavioral’ signals like their typing patterns. This kind of authentication is nearly impossible to defeat, and can reduce the number of fraudulent transactions, while protecting users from cybercrime.

Chatbots are not the only ‘bots’ being deployed in the enterprise: simpler, script-based ‘bots’ have been around for a while, often created and managed by Robotic Process Automation (RPA) software. The addition of AI has resulted in a new category of products, sometimes called Intelligent RPA, which are capable of a much broader set of tasks than those that previously required human intervention. For financial businesses, this can involve reading scans of physical documents, or correcting human mistakes in requests for transfers.

Another application fast gaining traction is cognitive search – a category of products which uses natural language processing (NLP) to help enterprise users get the answers they need without having to trawl through countless PDFs or slides. Financial organisations that have adopted cognitive search include the Bank of England, which has deployed tech from a Start-up called Squirro, and Japan’s Sumitomo Mitsui Financial Group who partnered with Allganize AI.

Predicting the markets

There are plenty of AI-based applications built to solve more specific challenges, however. American investment banking giant BNY Mellon recently collaborated with Google Cloud to develop a machine learning model capable of predicting when US Treasury market trades will fail to settle – something it said normally happens to about 2% of transactions, and can result in financial penalties.

When the new model predicts a market trade will fail to settle, it provides a warning to the client and allows them to take corrective action. In terms of development, the system was trained on 10 months of BNY Mellon settlement data, and was able to identify around 40% of the trades that were likely to fail, which helped both sides avoid fines and reputational damage.

It’s useful to note that the bank opted to use the machine learning software stack from Google Cloud, but trained the model in internal data centres – hinting at the existence of BNY Mellon’s own AI supercomputing resources.

Machine learning models feed on customer data, and motivated by concerns about security and privacy, many financial organisations are choosing to train their models in facilities they operate themselves, rather than entrusting them to a third party. Whichever route is pursued, secure and high performance infrastructure systems, like those operated by colocation data centre provider, Kao Data, in addition to low latency cloud connectivity, remains critical to the financial services industry.

Automation and security

Another interesting case study comes from American startup Doma, who was founded in 2016. Doma developed an AI-based system to execute and automate workflows involved in real estate transactions and was able to instantly underwrite title insurance, reducing the time required for the process from several days to minutes. The impact of its technology was widely recognised and the company went public just five years later, in a SPAC deal worth $3 billion.

On the more secretive part of the spectrum, AI has given rise to a new generation of hedge and quant funds that rely on proprietary algorithms to make stock selection or investment decisions. Examples of AI-first funds include Millburn Ridgefield Corporation and Cerebellum Capital, which describes its investment programs as “continuously designed, executed, and improved by a software system based on techniques from statistical machine learning.”

A fascinating project in this space is Numerai – ostensibly an AI-run hedge fund, its decisions are controlled by models sourced from thousands of data scientists. The organisation provides anonymized transaction data for training and analysis.

Its most accurate predictions are then combined into a meta-model, which is used to generate cash, and a chunk of the proceeds are paid out to the data scientists that created them. To-date, the startup claims it has spent more than $46 million on compensation to the coders that built its investment ‘brain’, which is great example of how AI can yield significant benefits for corporations and developers.

Considering these examples, it’s clear to see that AI has already transformed the financial industry and continues to do so, but there are plenty of innovations still to be discovered and productised. The industry’s demand for AI infrastructure, specifically high density GPU-based compute clusters, is undoubtedly only going to increase.

Moreover, with many financial services Start-ups developing new systems via the cloud, the need to balance cost with performance is paramount. Hybrid architectures combining the sheer scale of the cloud with the power of localized and HPC infrastructure are today becoming more prevalent in the field, with some studies showing up to 70% in cost savings over-two and-three-year instances.

For any savvy financial services business intent on reaping the benefits of AI, how and where they invest in their AI infrastructure, remains as important a decision, as any.

Rod Faul

Rod Faul is Senior Client Director at Kao Data and has enjoyed a 30-year career within Tier 1 telco and data centre sectors, working with some of the largest colocation end-users in the industry.



Share

Other articles

17 Dec 2024

Planting Seeds for our Community in Stockport

Read more
12 Dec 2024

Exceeding and ensuring high standards for operational excellence.

Read more
7 Nov 2024

Capacity Europe 2024 - Feedback from the trade show floor

Read more
Get a quote

Privacy Consent

This site optionally uses cookies to monitor and improve your experience, and for anonymised tracking of visitor behaviour.

You can learn more about how we use cookies by viewing our Privacy Policy.